Abstract: |
Trophic structure, the partitioning of biomass among trophic levels, is a major characteristic of ecosystems. Most studies of the forces that shape trophic structure emphasize either "bottom-up" or "top-down" regulation of populations and communities. Recent work has shown that these two forces are not mutually exclusive alternatives, but efforts to model their interaction still often yield unrealistic predictions. We focus on the problems involved with modeling situations in which community composition, including both the number of trophic levels and the species composition within a trophic level, can change. We review the development of these ideas, emphasizing in particular how compositional change can alter theoretical expectations about the regulation of trophic structure. A comparison of studies on the effects of predators and resource productivity in limnetic ecosystems reveals an intriguing disparity between the results of manipulative experiments and those of correlational studies. We suggest that this contrast is a result of the difference in the temporal scales operating in the two types of studies. Ecosystem-level variables may appear to approach an equilibrium in short-term press experiments
however, processes such as invasion and extinction of species will not have time to play out in most such experiments. We found that the responses of ecosystems to short-term experimental treatments involve less change in species composition than is found in natural communities that have diverged in response to local conditions over longer periods. We argue that the results of short-term experiments support the predictions of models in which the species pool does not change, whereas correlational studies among systems support theories that incorporate compositional change.
|